翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Möbius inversion : ウィキペディア英語版
Möbius inversion formula

In mathematics, the classic Möbius inversion formula was introduced into number theory during the 19th century by August Ferdinand Möbius.
Other Möbius inversion formulas are obtained when different locally finite partially ordered sets replace the classic case of the natural numbers ordered by divisibility; for an account of those, see incidence algebra.
==Statement of the formula==
The classic version states that if ''g'' and ''f'' are arithmetic functions satisfying
: g(n)=\sum_f(d)\quad\textn\ge 1
then
:f(n)=\sum_\mu(d)g(n/d)\quad\textn\ge 1
where μ is the Möbius function and the sums extend over all positive divisors ''d'' of ''n''. In effect, the original ''f''(''n'') can be determined given ''g''(''n'') by using the inversion formula. The two sequences are said to be Möbius transforms of each other.
The formula is also correct if ''f'' and ''g'' are functions from the positive integers into some abelian group (viewed as a \mathbb-module).
In the language of Dirichlet convolutions, the first formula may be written as
:g=f
*1
where ''
*'' denotes the Dirichlet convolution, and ''1'' is the constant function 1(n)=1. The second formula is then written as
:f=\mu
* g.
Many specific examples are given in the article on multiplicative functions.
The theorem follows because
* is (commutative and) associative, and 1
* \mu = \epsilon, where \epsilon is the identity function for the Dirichlet convolution, taking values \epsilon(1) = 1, \epsilon(n) = 0 for all n > 1. Thus \mu
* g = \mu
* (1
* f) = (\mu
* 1)
* f = \epsilon
* f = f.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Möbius inversion formula」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.